
Finite-temperature dynamics of the Anderson model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 3605

(http://iopscience.iop.org/0953-8984/14/13/318)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 18/05/2010 at 06:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 3605–3625 PII: S0953-8984(02)33591-4

Finite-temperature dynamics of the Anderson model

David E Logan and Nigel L Dickens

University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd,
Oxford OX1 3QZ, UK

Received 8 February 2002, in final form 6 March 2002
Published 22 March 2002
Online at stacks.iop.org/JPhysCM/14/3605

Abstract
The recently introduced local moment approach (LMA) is extended to
encompass single-particle dynamics and transport properties of the Anderson
impurity model at finite temperature, T . While it is applicable to arbitrary
interaction strengths, primary emphasis is given to the strongly correlated
Kondo regime (characterized by the T = 0 Kondo scale ωK ). In particular the
resultant universal scaling behaviour of the single-particle spectrumD(ω; T ) ≡
F(ω/ωK; T/ωK) within the LMA is obtained in closed form; leading to an
analytical description of the thermal destruction of the Kondo resonance on
all energy scales. Transport properties follow directly from a knowledge of
D(ω; T ). The (T /ωK)-dependence of the resulting resistivity ρ(T ), which is
found to agree rather well with numerical renormalization group calculations,
is shown to be asymptotically exact at high temperatures; to concur well with
the Hamann approximation for the s–d model down to T/ωK ∼ 1, and to cross
over smoothly to the Fermi liquid form ρ(T )− ρ(0) ∝ −(T /ωK)

2 in the low-
temperature limit. The underlying approach, while naturally approximate, is
moreover applicable to a broad range of quantum impurity and related models.

1. Introduction.

The Anderson impurity model (AIM) [1], reviewed fully in [2], remains as topical as ever.
While traditionally the archetype for understanding [2] magnetic impurities in metals, and
heavy-fermion systems when coherence effects are suppressed by disorder or alloying, study
of it has recently acquired further impetus with the advent of quantum dots [3,4], which form
directly tunable mesoscopic realizations of the model.

In the strong-coupling domain of large local Coulomb interaction (U ), the intrinsic low-
energy physics of the AIM is of course that of the Kondo effect [2]. Manifest dynamically
in the many-body Kondo resonance arising in the single-particle spectrum D(ω), the effect
is characterized by a single low-energy Kondo scale, ωK. In consequence, D(ω) exhibits
scaling in terms of ω/ωK alone, with no explicit dependence on bare material parameters.
What then is the form of this universal scaling spectrum? That the question itself is obvious
does not vitiate the difficulties involved in answering it. Conventional perturbation theory
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cannot in general handle strong interactions, necessitating the development of new, non-
perturbative theoretical approaches; the difficulties being particularly acute when dealing
with dynamical and transport properties. And while Fermi liquid theory determines the low-
frequency form [2] D(ω) − D(0) ∝ −(|ω|/ωK)

2, such behaviour is limited to the lowest of
frequencies |ω|/ωK � 1, and otherwise provides no clues to the general form of the Kondo
resonance.

We have recently considered this problem [5] via the local moment approach (LMA) [6–9].
This non-perturbative method, naturally approximate but physically and technically quite
simple, has been developed to handle a broad class of quantum impurity models, as well
as lattice-based problems such as the Hubbard or periodic Anderson models within the local
framework of dynamical mean-field theory [10, 11]. For the normal (metallic host [1]) AIM
considered in [5], the LMA provides a simple analytical description of the Kondo scaling
spectrum on all energy scales ω/ωK. It shows in particular that while Fermi liquid behaviour
is naturally recovered at sufficiently low frequencies, the scaling spectrum is entirely dominated
for |ω|/ωK � 1 by long tails that exhibit a very slow logarithmic decay; in contrast to
either the power-law (Doniach–S̆unjić) behaviour previously thought to arise from empirical
fits to quantum Monte Carlo [12, 13] and numerical renormalization group (NRG) [14, 15]
calculations, or the simple Lorentzian form [2] inferred e.g. from crude extrapolation of
low-frequency Fermi liquid behaviour. The resultant theory, while naturally approximate,
was found [5] to give very good agreement for essentially all frequencies with recent NRG
calculations [15].

The above comments refer of course to zero temperature (T ), and the obvious question
is whether the LMA can be extended to finite T . If so, then for the strong-coupling
Kondo regime in particular, the single-particle spectrum D ≡ D(ω; T ) should scale
universally in terms of ω/ωK and T/ωK, with ωK again the T = 0 Kondo scale; and
the approach then affords an analytical handle on the (ω-differential) thermal destruction
of the Kondo resonance. In addition, and importantly, knowledge of the T -dependence of
the single-particle spectrum enables direct access to transport properties [2], notably the
resistivity ρ(T ).

It is these issues we consider here, focusing as in [5] on the symmetric AIM, since
it is this case whose low-energy physics reduces in strong coupling to the usual Kondo
model (with exchange but not potential scattering). The relevant background is introduced
in section 2; and in section 3 practical extension of the LMA to finite T is considered. For
finite interaction strengths Ũ = U/π�0 (with �0 the one-electron hybridization), the LMA
captures the spectra on all energy scales, including e.g. the non-universal Hubbard satellites.
In section 4 a brief discussion is thus first given of the thermal evolution of the spectrum
on all energy scales; followed by consideration of spectral scaling as the Kondo limit is
approached with increasing Ũ , where a scaling form π�0D(ω; T ) = F( ω

ωK
; T
ωK
) is correctly

recovered.
It is the scaling regime on which we naturally focus in the remainder of the paper,

developing an analytical description thereof in section 5. The asymptotic behaviour of the
scaling spectrum in particular, encompassing high frequencies for all temperatures and vice
versa, is obtained explicitly; and, as for the T = 0 limit [5], is found to be largely independent
of the details of the LMA. The temperature dependence of the resultant LMA resistivity, which
is found to agree rather well with finite-Ũ NRG calculations [16], is considered in section 6;
where we show it to be asymptotically exact for T/ωK 
 1 [17], to agree well with the
Hamann formula [18] for the resistivity of the Kondo/s–d model down to T/ωK ∼ 1, and to
cross over to characteristic low-temperature Fermi liquid form [19] ρ(T )−ρ(0) ∝ −(T /ωK)

2

for T/ωK � 1. Some closing remarks are given in section 7.
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2. Background

We begin with requisite background material, starting with the familiar AIM Hamiltonian [1,2]:

Ĥ =
∑
k,σ

εkn̂kσ +
∑
σ

(
εi +

U

2
n̂i−σ

)
n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + h.c.). (2.1)

The first term describes the non-interacting host band with dispersion εk; while the second
refers to the correlated impurity with on-site interaction U , and site energy εi = −U

2 for the
particle–hole (p–h) symmetric AIM (for which the impurity charge ni = ∑

σ 〈n̂iσ 〉 = 1 for all
U and T ). The final term in equation (2.1) is the host–impurity coupling.

In considering single-particle dynamics at finite T , we focus naturally on the retarded
impurity Green function G(ω; T ) (↔G(t; T ) = −iθ(t)〈{ciσ (t), c†

iσ }〉), with the single-
particle spectrum D(ω; T ) = − 1

π
ImG(ω; T ). In the non-interacting limit U = 0,

G(ω; T ) reduces trivially to g(ω) = [ω+ − �(ω)]−1, with ω+ = ω + i0+. Here �(ω) =∑
k V

2
ik[ω+ − εk]−1 (=�R(ω) − i�I(ω)) is the one-electron hybridization function such that

�I(ω) = π
∑

k V
2
ikδ(ω − εk) = �I(−ω); and the usual hybridization strength is defined by

�0 = �I(ω = 0) ∝ ρhost(ω = 0) (withω = 0 the Fermi level). From a knowledge ofD(ω; T )
generally, and hence the transport time τ(ω; T ) ∝ [�0D(ω; T )]−1, impurity contributions to
transport properties follow via the transport integrals [2,16,20]. The resistivity ρ(T ) is given
in particular by[

ρ(T )

ρ(0)

]−1

=
∫ ∞

−∞
dω

1

π�0D(ω; T )
(

−∂f (ω; T )
∂ω

)
(2.2)

with f (ω; T ) the Fermi function; it will be considered explicitly in section 6. The thermal
conductivity, Hall coefficient etc are likewise expressible [2, 16, 20] as appropriate moments
of τ l(ω; T ) ∂f (ω; T )/∂ω.

The essential strategy behind the LMA [5–9] is threefold. (i) Local moments, regarded as
the first effect of electron interactions, are introduced explicitly from the outset [1]. Despite the
stark deficiencies of static mean-field (MF) theory by itself (i.e. unrestricted Hartree–Fock), it
may nevertheless be used as a starting point for a genuine many-body approach encompassing
the correlated electron dynamics that are the essence of the Kondo effect. (ii) To this end the
LMA invokes a two-self-energy description that is a natural consequence of the underlying two
degenerate, broken symmetry MF states; introducing non-trivial dynamics into the associated
self-energies �σ(ω; T ) via coupling of single-particle excitations to low-energy transverse
spin fluctuations. (iii) The final key element behind the LMA for T = 0, likewise discussed
further below, is that of symmetry restoration (SR): self-consistent restoration of the broken
symmetry endemic at MF level. If symmetry can be restored (as is always the case for the
metallic AIM considered here), then self-consistent imposition of it reveals the finite timescale
τ ∼ h/ωm on which it occurs; the associated energy ωm ∝ ωK being the Kondo scale, whose
origin within the LMA thus stems directly from SR.

The impurity Green function is expressed formally as [5–9]

G(ω; T ) = 1
2

∑
σ

Gσ (ω; T ) (2.3a)

where

Gσ(ω; T ) = [ω+ −�(ω)− �̃σ (ω
+; T )]−1 (2.3b)

(and σ = ↑/ ↓ or +/−). The corresponding self-energies �̃σ (ω
+; T ) are separated as

�̃σ (ω
+; T ) = −σ

2
U |µ| + �σ(ω

+; T ) (2.4)
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into (i) a purely static Fock contribution (with local moment |µ|) that alone would survive at
MF level (the trivial Hartree piece of U

2 ni = U
2 is cancelled precisely by εi = −U

2 ); and (ii) an
ω-dependent contribution �σ(ω

+; T ) containing in particular the spin dynamics that dominate
the low-energy physics of the problem. The Gσ(ω; T ) may be cast equivalently as

Gσ(ω; T ) = [Gσ (ω)
−1 −�σ(ω

+; T )]−1 (2.5)

in terms of the MF propagator

Gσ (ω) =
[
ω+ +

σ

2
U |µ| −�(ω)

]−1

, (2.6)

and with�σ ≡ �σ [{Gσ }] a functional of G↑, G↓. (Note that the Gσ (ω) here refer to, and�σ and
Gσ are thus constructed from, (either) one of the underlying degenerate MF states; and that the
rotational invariance of the problem is correctly preserved by the ‘spin-sum’ equation (2.3a)
as shown directly in [6].) Separating the retarded self-energies as

�σ(ω
+; T ) = �R

σ (ω
+; T )− i�I

σ (ω
+; T ) (2.7)

analyticity demands that �I
σ (ω

+; T ) be positive semi-definite for all ω and T ; while p–h
symmetry implies

�I
σ (ω

+; T ) = �I
−σ (−ω+; T ) �R

σ (ω
+; T ) = −�R

−σ (−ω+; T ), (2.8)

such that (− 1
π

ImGσ(ω; T ) =) Dσ(ω; T ) = D−σ (−ω; T ) and hence D(ω; T ) = D(−ω; T )
for the impurity spectrum.

For T = 0 it is of course more natural/convenient to work with time-ordered self-
energies, but these are simply related to their retarded counterparts. We denote the
T = 0, t-ordered Green functions by GT(ω) and GT

σ (ω) (for which equations (2.3) hold
with ω+ = ω + i0+ sgn(ω)); and the corresponding self-energies by �σ(ω), such that
�σ(ω) = �R

σ (ω) − i sgn(ω)�I
σ (ω) with �I

σ (ω) � 0 ∀ω. The t-ordered and T = 0
retarded Green functions are then related simply by ReGσ(ω; T = 0) = ReGT

σ (ω) and
ImGσ(ω; T = 0) = sgn(ω) ImGT

σ (ω); and likewise:

�R
σ (ω

+; T = 0) = �R
σ (ω) �I

σ (ω
+; T = 0) = �I

σ (ω). (2.9)

The LMA includes in �σ(ω) the non-perturbative class of diagrams shown in figure 1,
that embody dynamical coupling of single-particle excitations to low-energy transverse spin
fluctuations. These capture the spin-flip scattering essential to describe the strong-coupling
Kondo regime for Ũ = U/π�0 
 1; while in weak coupling they ensure the LMA is
perturbatively exact to/including second order in U [6]. Other classes of diagrams may also

Σσ = −σ −σ

σ

σ
i

i i

i

σ

Figure 1. The principal contribution to the LMA �σ (ω); see the text. Wavy
lines denote U .
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be included [6], but are of minor importance; retention of the dynamical spin-flip scattering
processes is however essential, and it is these on which we focus. Figure 1 translates to

�σ(ω) = U 2
∫ ∞

−∞

dω1

2π i
G−σ (ω − ω1)"

−σσ (ω1) (2.10)

where "−σσ (t) = i〈T (S−σ
i (t)Sσi )〉 is the (t-ordered, T = 0) transverse spin polarization

propagator (shown hatched in figure 1). It is given at the simplest level by an RPA-like p–h
ladder sum in the transverse spin channel; namely,

"−σσ (ω) = 0"
−σσ

(ω)[1 − U 0"−σσ (ω)]−1 (2.11)

with 0"−σσ (ω) the bare p–h bubble, itself expressed in terms of the broken symmetry MF
propagators {Gσ } (solid lines in figure 1).

The final step in the LMA for T = 0 [5–9] is self-consistent imposition of SR, embodied
in the condition �̃↑(ω = 0) = �̃↓(ω = 0) at the Fermi level ω = 0; and hence for the p–h
symmetric AIM (using equations (2.4), (2.8), (2.9)) by

(�R
↑ (0

+; T = 0) ≡) �R
↑ (0) = 1

2U |µ|. (2.12)

For given Ũ , equation (2.12) amounts in practice to a self-consistency equation for the
local moment |µ| [6]. In physical terms, its consequences in general are threefold [6, 7].
(i) Satisfaction of the SR condition guarantees that the low-energy properties of the system
amount to a renormalization of the non-interacting limit, i.e. that the system is a Fermi liquid
with well defined quasiparticle behaviour. (ii) Most importantly, solution of equation (2.12)
generates a low-energy spin-flip scale ωm that sets the finite timescale τ ∼ h/ωm for
restoration of the broken symmetry inherent at crude MF level (stemming in effect from
dynamical tunnelling between the degenerate MF minima). Manifest in particular as a strong
resonance in Im"+−(ω) centred (by definition of ωm) on ω = ωm, this is the Kondo scale;
with ωm ∝ exp(−πU/8�0) in strong coupling. (iii) If the SR condition equation (2.12)
cannot be satisfied then a doubly degenerate local moment phase results [7]: the spin-flip
scale ωm = 0 (as characteristic of the locally degenerate state) reflecting the fact that the
broken symmetry/degeneracy cannot be restored (τ = ∞). This situation does not arise in the
metallic AIM considered here, where SR is satisfied for all finite Ũ = U/π�0. But it is the
self-consistent possibility of such inherent in equation (2.12) that enables the LMA to access
the quantum phase transition from a Fermi liquid to a local moment state in problems such as
the soft-gap AIM [7, 15] where the non-Fermi liquid local moment state arises.

Before turning to the LMA for finite T we note (for use in section 5 below) that the
conventional single self-energy�(ω+; T ), defined byG(ω; T ) = [ω+ −�(ω)−�(ω+; T )]−1,
is readily obtained as a by-product of the two-self-energy description intrinsic to the LMA.
Using equations (2.3) it is given for arbitrary T by

�(ω+; T ) =
1
2 [�̃↑(ω+; T ) + �̃↓(ω+; T )] − g(ω)�̃↑(ω+; T )�̃↓(ω+; T )

1 − 1
2g(ω)[�̃↑(ω+; T ) + �̃↓(ω+; T )] (2.13)

with g(ω) = [ω+ −�(ω)]−1 the U = 0 propagator.

3. Finite-T LMA

To extend the LMA to finite temperature we first obtain, and then consider the rather
transparent physical content of, the T = 0 retarded self-energy �σ(ω

+; T = 0). This follows,
using equations (2.7), (2.9), from its t-ordered counterpart �σ(ω); itself given explicitly by
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equation (2.10), where the transverse spin polarization propagator therein satisfies the Hilbert
transform:

"−σσ (z) =
∫ ∞

−∞

dω1

π

χ−σσ (ω1; T = 0) sgn(ω1)

ω1 − z
. (3.1)

Here, z = ω + i0+ sgn(ω) for the t-ordered polarization propagator "−σσ (ω) contained in
equation (3.1) (while z = ω + i0+ (=ω+) for the corresponding T = 0 retarded propagator
"−σσ (ω+; T = 0)); and χ−σσ (ω; T = 0) = Im"−σσ (ω) (=sgn(ω) Im"−σσ (ω+; T = 0))
is the corresponding spectral density of transverse spin excitations, such that χ−σσ (ω; T =
0) � 0 and χ−σσ (ω; T = 0) = χσ−σ (−ω; T = 0) [6]. Using equation (3.1) in (2.10) leads
straightforwardly to

�σ(ω) = U 2
∫ ∞

−∞

dω1

π
[θ(ω1)G+

−σ (ω − ω1) + θ(−ω1)G−
−σ (ω − ω1)]χ

−σσ (ω1; T = 0) (3.2)

where

G±
σ (ω) =

∫ ∞

−∞
dω1

D0
σ (ω1)θ(±ω1)

ω − ω1 ± i0+
(3.3)

denote the one-sided transforms of the (t-ordered) MF propagator in terms of its spectral density
D0

σ (ω); and θ(x) is the unit step function. The T = 0 retarded self-energy then follows directly
using equation (2.9), namely

�σ(ω
+; T = 0) = U 2

∫ ∞

−∞

dω1

π

∫ ∞

−∞
dω2 [θ(ω1)θ(ω2) + θ(−ω1)θ(−ω2)]

× D0
−σ (ω2)

ω − ω1 − ω2 + i0+
χ−σσ (ω1; T = 0) (3.4)

as sought.
The natural extension of the LMA to finite T may now be deduced by considering the

physical processes to which the two terms in equation (3.4) for T = 0 correspond. We focus
explicitly on �↓ in the following; with f (ω; T ) = [exp(βω) + 1]−1 the Fermi function, such
that f (ω; 0) = θ(−ω). Consider the first term in equation (3.4) for �↓(ω+; T = 0), in
θ(ω1)θ(ω2) (noting that χ+−(ω1; T ) for ω1 > 0 corresponds to first flipping the impurity spin
from ↑ to ↓). Physically, this corresponds to processes in which (for �↓) a ↓-spin electron is
first added to an ↑-spin occupied impurity, and the originally present ↑-spin then hops off the
impurity/site into the conduction band. The latter generates an on-site ↑ → ↓ spin-flip, which
is a hard-core boson in the sense that at most one spin-flip can be created on the impurity; and
the (T = 0) probability with which the ↑-spin can be added to/hop into (empty) conduction
band states is θ(ω2) = 1 − f (ω2; T = 0). Appropriate extension of this contribution to finite
T is then achieved simply by replacing θ(ω1)θ(ω2)with θ(ω1)[1−f (ω2; T )] in equation (3.4)
for �↓; with 1 − f (ω2; T ) now the finite-T probability with which the original ↑-spin can
hop into conduction band states, and to which process creation of the on-site spin-flip is again
slaved.

A directly analogous situation pertains to the second term in equation (3.4) for �↓, in
θ(−ω1)θ(−ω2) (noting that χ+−(ω1; T ) for ω1 < 0 corresponds to first flipping the impurity
spin from ↓ to ↑). This corresponds physically to processes in which (for �↓) an originally
present ↓-spin on the impurity is first removed, and an ↑-spin electron then hops from the
conduction band onto the impurity. The latter process generates the on-site ↓ → ↑ spin-flip;
and the (T = 0) probability with which the ↑-spin electron may be removed from the (occupied)
conduction band states is θ(−ω2) = f (ω2; T = 0). Extension of this contribution to finite T
is then achieved by replacing θ(−ω1)θ(−ω2) with θ(−ω1)f (ω2; T ) in equation (3.4) for �↓;
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with f (ω2; T ) the finite-T probability with which an ↑-spin electron can be removed from the
conduction band to hop onto the impurity, thereby generating the on-site spin-flip.

The finite-T LMA we consider is thus given from the above by

�↓(ω+; T ) = U 2
∫ ∞

−∞

dω1

π

∫ ∞

−∞
dω2 χ

+−(ω1; T )
D0

↑(ω2)

ω − ω1 − ω2 + i0+
g(ω1;ω2) (3.5a)

with

g(ω1;ω2) = θ(ω1)[1 − f (ω2; T )] + θ(−ω1)f (ω2; T ). (3.5b)

In equation (3.5a) we have also naturally included the T -dependence ofχ+−(ω; T ) � 0; where
again χ+−(ω; T ) = sgn(ω) Im"+−(ω+; T ), with "+−(ω+; T ) now the finite-T polarization
propagator (for which the Hilbert transform equation (3.1) is again applicable, with z = ω+).
�↑(ω+; T ) likewise follows from equation (3.5) by inverting all spins (↑ ↔ ↓, + ↔ −) or, in
the symmetric case of interest, from p–h symmetry equation (2.8).

We note that equation (3.5) is not what arises if one attempts to obtain the appropriate
LMA �σ(ω

+; T ) via a conventional analytical continuation of the corresponding imaginary
time �σ(iωn). In that case it is readily shown that the resultant �↓(ω+; T ) is indeed of
form equation (3.5a), but with g(ω1;ω2) replaced by g̃(ω1;ω2) = −sgn(ω1)[fB(−ω1; T ) +
f (ω2; T )] where fB(ω) = [exp(βω)−1]−1 is the Bose function. This corresponds physically
to treating the impurity spin-flips as free bosons, with thermal statistics that are entirely divorced
from those of the fermions. In generating multiple thermally created spin-flips, it thus in effect
violates the hard-core condition for the bosonic spin-flips—whose probability of creation is
dictated by the (T -dependent) probability with which fermions can hop to/from the impurity
from/to the conduction band, as embodied in equation (3.5). The hard-core constraint can
however be recovered simply by replacing the free Bose function fB(−ω1; T ) in g̃(ω1;ω2) by
its T = 0 limit fB(−ω1; 0) = −θ(ω1): in that case g̃(ω1;ω2) reduces precisely to g(ω1;ω2),
and equation (3.5) for�↓(ω+; T ) is recovered. We do not know what additional diagrams may
be required to recover hard-core behaviour within the framework of a conventional analytical
continuation; but believe that the physical arguments given above, together with the results of
the following sections, attest to the essential validity of equation (3.5) as used in practice for
the LMA �σ(ω

+; T ).
The finite-T LMA is readily implemented. The retarded G(ω; T ) (and hence D(ω; T ) =

− 1
π

ImG(ω; T )) is given from equation (2.3), with the self-energies �̃σ (ω
+; T ) from

equation (2.4) and �σ(ω
+; T ) from equation (3.5). The finite-T retarded polarization

propagator entering equation (3.5a) (such that χσ−σ (ω; T ) = sgn(ω) Im"σ−σ (ω+; T )) is
calculated in practice for finite Ũ at the level of the RPA-like p–h ladder sum, obtained by
straightforward analytical continuation of the imaginary time "+−(iωm) = 0"+−(iωm)[1 −
U 0"+−(iωm)]−1 (cf equation (2.11)). Finally, it is also straightforward to include a
T -dependence for the local moment |µ| = |µ(T )| entering the MF propagators (equation (2.6))
and the LMA self-energies (equation (2.4)). This may be encompassed via |µ(T )| =
|µ(0)| + δ|µ(T )|, with |µ(0)| the T = 0 moment required to satisfy the SR condition
equation (2.12); and with δ|µ(T )| calculated in practice at MF level, namely δ|µ(T )| =∫ ∞
−∞ dω [D0

↑(ω)−D0
↓(ω)][f (ω; T )−θ(−ω)] with D0

σ (ω) = �0π
−1/[(ω+ σ

2U |µ(0)|)2 +�2
0]

the MF spectral density. We find however that the resultant T -dependence is negligible for
essentially all Ũ (provided one is not concerned with temperatures on the order of U ), and we
thus omit it from the results shown explicitly in sections 4ff.
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Figure 2. π�0D(ω; T ) versus ω/�0 for Ũ = 4 and T/ωK = 0.1 (solid curve), 10 (long dash),
40 (short dash) and 160 (dotted curve).

4. Results

The primary interest in single-particle dynamics resides of course in thermal destruction of
the low-energy Kondo resonance, particularly in the strong-coupling Kondo/spin-fluctuation
regime where the AIM maps onto the Kondo or s–d model. That is our main focus, and is
pursued in the following sections. First however, we consider the issue of spectral scaling as
the Kondo limit is approached with increasing Ũ ; preceded by a brief discussion of the thermal
evolution of the spectrum on all energy scales. The following results, obtained from the finite-T
LMA outlined above, refer explicitly to the usual wide-band AIM for which �I(ω) = �0 ∀ω.
Here and throughout, the Kondo scale ωK is defined as the half-width at half-maximum of
the T = 0 single-particle spectrum D(ω; 0); and ωK ∝ ωm [5, 6], with the spin-flip scale ωm

determined (as above) via SR, and exponentially small in strong coupling.
Figure 2 shows the resultant spectrum, π�0D(ω; T ) versus ω/�0; for a fixed interaction

strength Ũ = U/π�0 = 4, and for temperatures T/ωK = 0.1, 10, 40 and 160, the intent being
an all-scales overview of spectral evolution. The dominant effect of increasing temperature
is naturally to erode the many-body Kondo resonance (as later considered in detail). This
process occurs initially ‘on the spot’, with no effect upon spectral features on the non-
universal energy scales ω ∼ �0 or U [2, 16]; as evident in figure 2 for T/ωK = 0.1 and
10, where e.g. the high-energy Hubbard satellites retain their T = 0 form (being centred
to high accuracy for the wide-band AIM on |ω| = U

2 (1 + 4�0
πU

) [6]). By contrast, for non-
universal temperature scales on the order T ∼ �0, spectral redistribution occurs on all
energy scales including the high-energy satellites. This effect, likewise known to arise from
NRG calculations [16], is evident in figure 2 for T/ωK = 40 and 160 (T/�0 ∼ 1

4 and
1 respectively).

We turn now to the question of spectral scaling. In the strong-coupling spin-fluctuation
regime, the low-energy physics of the AIM depends solely upon the Kondo scale; and theT = 0
Kondo resonance hence exhibits universal scaling in terms of ω/ωK alone, with no explicit
dependence on the bare material parameters U or �0. The LMA for T = 0 leads correctly
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Figure 3. π�0D(ω; T ) versusω/ωK for fixed T/ωK = 1, and Ũ = 4 (dotted curve), 6 (short dash)
and 8 (long dash). The approach to the Kondo limit scaling spectrum (solid curve, see section 5)
is evident. Inset: corresponding spectra on an absolute scale, versus ω/�0.

to such scaling behaviour with increasing Ũ [5, 6], and the resultant scaling spectrum gives
very good agreement with NRG calculations [5, 15]. Scaling behaviour should likewise arise
in strong coupling for T �= 0, but with the scaling spectrum π�0D(ω; T ) ≡ F(ω/ωK; T/ωK)

now dependent upon both ω/ωK and T/ωK.
That such scaling indeed arises within the LMA upon progressively increasing Ũ is

shown in figure 3 where, for fixed T/ωK = 1, π�0D(ω; T ) is shown for three different
interaction strengths, Ũ = 4, 6, 8. The inset shows the spectrum on an absolute scale
versusω/�0, illustrating the exponential narrowing of the Kondo resonance with increasing Ũ
(ωK ∝ exp(−πU/8�0)). The main figure by contrast shows π�0D(ω; T ) versus ω/ωK. The
spectra are indeed seen to approach asymptotically that of the Kondo scaling limit (obtained
analytically in section 5, and also shown in figure 3); which behaviour is reached in practice
for the Ũs considered in figure 3. The scaling illustrated above arises generically, and figure 4
shows the resultant LMA scaling spectra π�0D(ω; T ) versus ω/ωK for a range of different
temperatures T/ωK.

Before proceeding to a detailed analysis of the scaling spectra, we comment briefly
on the T -dependence of the transverse spin polarization propagator "+−(ω+; T ), whose
spectral density χ+−(ω; T ) enters the LMA self-energy �σ(ω

+; T ) (equation (3.5a)). Its
T -dependence, arising from that of the 0"+−(ω+; T ) bubble, is readily shown to occur
on the scale T ∼ �0 and is non-negligible only for non-universal temperatures of this
order (where it contributes e.g. to the ‘spectral redistribution’ discussed above in regard
to figure 2). The Kondo regime by contrast corresponds formally to finite T/ωK in the limit
ωK ∝ exp(−πU/8�0) → 0. Here the T -dependence of χ+−(ω; T ) is thus entirely negligible
(so from now on is referred to solely as χ+−(ω)); and the T -dependence of the LMA scaling
spectrum is then controlled exclusively by g(ω1;ω2) (equation (3.5b)) entering the LMA
�σ(ω

+; T ).
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Figure 4. LMA(RPA) scaling spectra: π�0D(ω; T ) versus ω/ωK for T/ωK = 0.1 (solid curve),
0.5 (long dash), 1 (short dash), 5 (point–dash) and 10 (dotted). LMA(RPA) denotes that χ+−(ω)
is given explicitly by the RPA-like ladder sum (see section 5.2).

5. Scaling spectrum

Our aim now is to obtain analytically the ω- and T -dependence of the strong-coupling Kondo
scaling spectrum arising from the LMA; and, as in [5] where the T = 0 limit was considered,
we do so with only minimal assumptions about the form of the transverse spin spectrum
χ+−(ω). In the following analysis the Kondo scale will appear in several guises, namely ωm,
ω′

m, ωK and �0Z (with Z the T = 0 quasiparticle weight). These are all however proportional
to one another, and thus equivalent; reflecting the fact that in the Kondo limit the problem is
characterized by a single low-energy scale.

Within the LMA the ‘primary’ manifestation of the Kondo scale is ωm, the spin-flip scale
determined via SR (see section 2 and below), and embodied in a strong resonance in χ+−(ω)
centred on ω = ωm. And the scaling spectrum is obtained by considering finite ω̃ = ω/ωm

and T̃ = T/ωm in the limit ωm ∝ exp(−πU/8�0) → 0, which projects out the non-universal
temperature and energy scales that are irrelevant to the scaling regime. Hence, referring to
equation (2.3), the ‘bare’ ω = ω̃ωm ≡ 0 may be neglected; and likewise �(ω) = �(ω̃ωm)

reduces to �(0) = −i�0 (which applies to any metallic host, so the following analysis is not
confined to the wide-band AIM). The scaling spectrum is thus given from equation (2.3) by

π�0D(ω; T ) = 1

2

∑
σ

(1 + �−1
0 �I

σ (ω
+; T ))

(�−1
0 �̃R

σ (ω
+; T ))2 + (1 + �−1

0 �I
σ (ω

+; T ))2
(5.1)

where �̃σ (ω
+; T ) = −σ U

2 + �σ(ω
+; T ) in the Kondo limit where the local moment saturates

(|µ| → 1). The spectrum is naturally determined solely by the scaling behaviour of the
self-energies, and the LMA �↑(ω+; T ) is given explicitly by (cf equation (3.5))

�↑(ω+; T ) = U 2
∫ ∞

−∞

dω1

π

∫ ∞

−∞
dω2 χ

+−(ω1)
D0

↓(ω2)

ω + ω1 − ω2 + i0+

× [θ(ω1)f (ω2; T ) + θ(−ω1)(1 − f (ω2; T ))]. (5.2)
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In the strong-coupling limit the transverse spin spectrum χ+−(ω) has the following
functional form [5, 6]:

1

π
χ+−(ω) = A

ωm
F(ω̃)θ(ω̃), (5.3a)

naturally scaling in terms of ω̃ = ω/ωm; and∫ ∞

0

dω

π
χ+−(ω) = 1 = A

∫ ∞

0
dy F(y) (5.3b)

which reflects the saturation of the local moment and complete suppression of double
occupancy in the Kondo limit. The function F(ω̃) is distributed around and centred upon
ω̃ = 1 (by definition of ωm), and F(ω̃) ∼ ω̃ as ω̃ → 0. The above behaviour is readily shown
to arise explicitly [6] with χ+−(ω) given via the p–h ladder sum equation (2.11), for which
F(ω̃) has the functional form

F(ω̃) = ω̃

1 − 2αω̃ + ω̃2
. (5.4)

The specific form of F(ω̃) is not however required in the following analysis (we shall need
it only in section 5.2); and the important asymptotics of the scaling spectrum considered in
section 5.1 are in fact independent of it.

From equations (5.2), (5.3), noting trivially that f (ω; T ) = f (ω̃; T̃ ), it follows directly
that

�I
↑(ω

+; T ) = πU 2A

∫ ∞

0
dy F(y)f (y + ω̃; T̃ )D0

↓(ωm[y + ω̃]) (5.5)

where D0
↓(ωm[y + ω̃]) ≡ D0

↓(0) since we consider finite ω̃ with ωm → 0. But in the strong-
coupling limit, D0

↓(0) = − 1
π

Im G↓(0) is given (see equation (2.6)) by

πU 2D0
↓(0) = 4�0 (5.6)

and hence:

�−1
0 �I

↑(ω
+; T ) = 4A

∫ ∞

0
dy F(y)f (y + ω̃; T̃ ). (5.7)

As required in the Kondo limit this scales solely in terms of ω̃ and T̃ , with no Ũ -dependence
(A being a pure number O(1) determined via equation (5.3b)).

From equations (5.2), (5.3), �R
↑ (ω

+; T ) is likewise given by

�R
↑ (ω

+; T ) = AU 2
∫ ∞

0
dy F(y)

{∫ ∞

−∞
dω2

D0
↓(ω2)

ωm[ω̃ + y] − ω2
f (ω2; T )

}
(5.8)

(with a principal value implicit from now on). For T = 0, the ω2-integration leads to
Re G−

↓ (ωm[ω̃ + y]), with Re G−
↓ (ω) logarithmically divergent as ω → 0. To handle this at

finite T we proceed as in [5]. The lower limit of the ω2-integration in equation (5.8) is
replaced by a UV cut-off, −λ, where λ = min[U2 ,D] (with D the host bandwidth); its precise
value being immaterial in the following. Rescaling ω2 to ω̃2 = ω2/ωm in equation (5.8) then
leads to

�−1
0 �R

↑ (ω
+; T ) = −4A

π

∫ ∞

0
dy F(y)

∫ ∞

−λ̃

dω̃2
f (ω̃2; T̃ )

ω̃2 − [ω̃ + y]
(5.9)

where equation (5.6) has again been used; and λ̃ = λ/ωm is thus defined, such that λ̃ → ∞ in
the Kondo limit.
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For T = 0, equation (5.9) reduces to [5]

�−1
0 �R

↑ (ω
+; 0) = 4

π
ln

[
λ

ωm

]
− 4A

π

∫ ∞

0
dy F(y) ln |y + ω̃| (5.10)

(where equation (5.3b) is used). From this the explicit U -dependence of the strong-coupling
Kondo scale ωm follows directly from SR (equation (2.12)), namely �R

↑ (0; 0) = 1
2U ; that is,

ωm = cω′
m (5.11a)

where

ω′
m = λ exp(−πU/8�0) (5.11b)

and c a constant O(1) given by

c = exp

[
−A

∫ ∞

0
dy F(y) ln y

]
. (5.11c)

The prefactor to the exponent of ωm or ω′
m is of course approximate (reflecting the UV cut-

off used above), but the exponent itself is exact. And from equation (5.10), �̃R
↑ (ω

+; 0) ≡
�R

↑ (ω
+; 0)−�R

↑ (0; 0) at T = 0 is given by

�−1
0 �̃R

↑ (ω
+; 0) = −4A

π

∫ ∞

0
dy F(y) ln

∣∣∣∣1 +
ω̃

y

∣∣∣∣. (5.12)

For the scaling spectrum D(ω; T ) (equation (5.1)) we finally require �̃R
↑ (ω

+; T ) =
−U

2 + �R
↑ (ω

+; T ) i.e.

�̃R
↑ (ω

+; T ) = [�R
↑ (ω

+; T )−�R
↑ (ω

+; 0)] + �̃R
↑ (ω

+; 0) (5.13a)

with �̃R
↑ (ω

+; 0) given above. And using equation (5.9), a straightforward calculation yields

�−1
0 [�R

↑ (ω
+; T )−�R

↑ (ω
+; 0)] = −4A

π

∫ ∞

0
dy F(y)H

( |y + ω̃|
T̃

)
(5.13b)

where

H(x) =
∫ ∞

0
dωP

(
1

ω + x
+

1

ω − x

)
1

exp(ω) + 1
(5.14)

and the limit λ̃ → ∞ has been taken with impunity. As for �−1
0 �I

↑(ω
+; T ) (equation (5.7)),

equations (5.12), (5.13) show that �−1
0 �̃R

↑ (ω
+; T ) also scales solely in terms of ω̃ and T̃ with

no Ũ -dependence, as required from equation (5.1) for the spectrum to scale thus.
Equations (5.7) and (5.12), (5.13), together with p–h symmetry (equation (2.8)), provide

the basic results from which the ω̃- and T̃ -dependence of the scaling spectrum may be
determined; we analyse them in the following sections.

Before proceeding we note that the function H(x) (equation (5.14)) is given in closed
form by

H(x) = − ln

[ |x|
2π

]
+ Reψ

(
1

2
+ i

|x|
2π

)
(5.15)

with ψ(z) = d ln1(z)/dz the digamma function; and is readily shown to be of form

H(x) = − ln

[
|x|/π(

1 +
[ |x|
π

]2) 1
2

]
− h(x) (5.16a)
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where h(x) is non-singular. A useful approximation to h(x) is

h(x) � γ

1 + 3
2γ

[
x
π

]2 (5.16b)

where γ = C + ln 2 and C (=0.577 . . .) is Euler’s constant. As required in the following
section, this ensures that the leading asymptotics of H(x) as x → 0 and ∞ are captured
exactly; being given by

H(x)
x→0∼ − ln

[ |x|
π

]
− γ + O(x2) (5.17a)

and

H(x)
x→∞∼ −1

6

[
π

x

]2

+ O(x−4) (5.17b)

(which is essentially a Sommerfeld expansion).

5.1. Spectral asymptotics

We now consider the asymptotic behaviour of the LMA scaling spectrum and, relatedly, the
corresponding single self-energy�(ω+; T ). This encompasses both the spectral tails, |ω̃| 
 1
for any T̃ , as well as high temperatures, T̃ 
 |1 + ω̃| for any ω̃; and is not dependent on
details of the function F(ω̃) (equation (5.3)) that determines the spectral density of transverse
spin excitations. In practice the specific form of F(ω̃) is required only for low ω̃ and T̃ , as
considered in section 5.2.

From equation (5.7), using equation (5.3b) and recalling that F(ω̃) is distributed around
and centred on ω̃ = 1, �−1

0 �I
↑(ω

+; T ) is given for |ω̃| 
 1 and any T̃ by

�−1
0 �I

↑(ω
+; T ) ∼ 4f (ω̃; T̃ ). (5.18)

This holds also for T̃ 
 |1 + ω̃| and all ω̃. Turning now to equation (5.13) for �̃R
↑ (ω

+; T ),
note first from equation (5.12) that for T = 0, �−1

0 �̃R
↑ (ω

+; 0) ∼ − 4A
π

∫ ∞
0 dy F(y) ln |ω̃/y|

for |ω̃| 
 1; and hence, using equations (5.11a), (5.11c) and (5.3b),

�−1
0 �̃R

↑ (ω
+; 0) ∼ − 4

π
ln |ω′| (5.19)

with

ω′ = ω/ω′
m (5.20a)

thus defined. Equation (5.13b) for |ω̃| 
 1 likewise reduces (again using equation (5.3b)) to
�−1

0 [�R
↑ (ω

+; T )−�R
↑ (ω

+; 0)] ∼ − 4
π
H(|ω̃|/T̃ ) = − 4

π
H(|ω′|/T ′), where

T ′ = T/ω′
m (5.20b)

is correspondingly defined. Combined with equation (5.19), and using equation (5.16a) for
H(x), equation (5.13) for �̃R

↑ (ω
+; T ) thus reduces for |ω̃| 
 1 to

�−1
0 �̃R

↑ (ω
+; T ) ∼ − 4

π

(
ln[([πT ′]2 + |ω′|2) 1

2 ] − h

( |ω′|
T ′

))
; (5.21)

which is readily shown to hold also for T̃ 
 |1 + ω̃| and all ω̃.
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The asymptotic behaviour of the Kondo limit scaling spectrum then follows from
equation (5.1), using equation (5.18) (and p–h symmetry), as

π�0D(ω; T ) ∼ 1

2

{
[1 + 4f (ω′; T ′)]

[�−1
0 �̃R

↑ (ω+; T )]2 + [1 + 4f (ω′; T ′)]2

+
[1 + 4f (−ω′; T ′)]

[�−1
0 �̃R

↑ (ω+; T )]2 + [1 + 4f (−ω′; T ′)]2

}
(5.22)

with �−1
0 �̃R

↑ (ω
+; T ) from equation (5.21). Three points should be noted here:

(i) For |ω′| 
 max(1, T ′) (where f (ω′; T ′) ∼ θ(−ω′)), equation (5.21) for �̃R
↑ (ω

+; T )
reduces (using equation (5.16b)) to its T = 0 limit, equation (5.19); hence the spectrum for
|ω′| 
 max(1, T ′) reduces to

π�0D(ω; T ) ∼ 1

2

{
1

[ 4
π

ln |ω′|]2 + 1
+

5

[ 4
π

ln |ω′|]2 + 25

}
. (5.23)

This is also the result of [5] for the T = 0 spectral ‘tails’, there shown to dominate the T = 0
scaling spectrum (down to ω ∼ ωK, the crossover to Fermi liquid behaviour occurring only
on the lowest energy scales |ω′| � 1); and to be quantitatively accurate in comparison to
NRG calculations for |ω′| � 5. The arguments leading to equation (5.23) show that the same
behaviour arises also at finite T , for sufficiently high frequencies |ω′| 
 max(1, T ′). This
‘common tail’ behaviour is indeed seen in the scaling spectra shown in figure 4; and is evident
also in recent finite-T NRG calculations for the Kondo model itself (see [21], figure 1 therein).

(ii) For T ′ 
 |1 + ω′| by contrast (where f (ω′; T ′) ∼ 1
2 ), equation (5.21) for �̃R

↑ (ω
+; T )

reduces (again using equation (5.16b)) to

�−1
0 �̃R

↑ (ω
+; T ) ∼ − 4

π
ln[εT ′] (5.24)

where ε = π
2 exp(−C); and the spectrum is thus given by

π�0D(ω; T ) ∼ 1

3 + 16
3π2 ln2[εT ′]

. (5.25)

For T ′ 
 |1 + ω′| the ω-dependence of D(ω; T ) is thus essentially irrelevant; as is seen in
figure 4 for e.g.T/ωK = 10, where the spectrum flattens out at low frequencies. Equation (5.25)
gives in particular the asymptotic high-temperature behaviour of the Fermi level spectrum
D(0; T ), which will be considered further in section 5.2.

(iii) For T ′ 
 1, the leading asymptotic behaviour of D(ω; T ) is clearly dominated by
the logarithmic growth of �̃R

↑ (ω
+; T ) (since f (ω′; T ′) � 1); and is given from equation (5.22)

by

π�0D(ω; T ) ∼ 3

[�−1
0 �̃R

↑ (ω+; T )]2

= 3π2

16

1

ln2[√(πT ′)2 + |ω′|2e−h(|ω′|/T ′)
] (5.26)

which form will prove important in section 6 where the resistivity ρ(T ) is considered.
Finally, the corresponding asymptotics of the conventional single self-energy�(ω+; T ) =

�R(ω+; T )−i�I(ω+; T )may also be obtained. �(ω+; T ) is related generally to the LMA self-
energies �̃σ (ω

+; T ) by equation (2.13); with the U = 0 propagator therein reducing trivially
to g(ω) ≡ g(0) = −i/�0 in the Kondo limit. Using equations (5.18), (5.21) the leading
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asymptotic behaviour of �(ω+; T ) (applicable for |ω′| 
 1 and all T ′, or T ′ 
 |1 + ω′| and
all ω′) is thereby found to be:

�−1
0 �R(ω+; T ) ∼ −sgn(ω) tanh

( |ω′|
2T ′

)
16

3π
ln[([πT ′]2 + |ω′|2) 1

2 ] (5.27a)

�−1
0 �I(ω+; T ) ∼ 16

3π2
ln2[([πT ′]2 + |ω′|2) 1

2 ]. (5.27b)

For |ω′| 
 max(1, T ′), the T -dependence of �(ω+; T ) is irrelevant, and equations (5.27)
reduce to �−1

0 �R(ω+; T ) ∼ −sgn(ω) 16
3π ln |ω′| and �0�

I(ω+; T ) ∼ 16
3π2 ln2 |ω′|. Again,

these coincide with the T = 0 result, also found in [5] to give good agreement with
T = 0 NRG calculations. For T ′ 
 |1 + ω′| by contrast T ′ rather than ω′ controls the
logarithms, which incipient divergence then dominates the imaginary part of the single self-
energy, �I(ω+; T ) ∼ ln2(T ′).

5.2. Scaling spectra: all scales

The asymptotic behaviour obtained above encompasses high frequencies for all temperatures,
as well as high temperatures for any frequency; and is independent of the detailed form
of the transverse spin spectrum χ+−(ω). To obtain the LMA scaling spectrum on all
energy/temperature scales, and in particular the low-(ω, T ) behaviour, requires by contrast
a full specification of χ+−(ω). This we now turn to, considering as in [5] two related variants
of the function F(ω̃) that determines χ+−(ω) via equation (5.3).

In the first, referred to from now on as the LMA(RPA), χ+−(ω) is obtained explicitly
from the RPA-like p–h ladder sum equation (2.11). F(ω̃) then has the form equation (5.4) [6],
and it is known [5, 6] that in the strong-coupling limit Ũ 
 1, α → 1 and A → 0 such that
Af (y) = δ(y − 1). From equation (5.3a), 1

π
χ+−(ω) = δ(ω − ωm) thus reduces to a simple

δ-function centred onωm. The Kondo limit scaling spectrum arising from the LMA(RPA) then
follows in closed form from equations (5.1), (5.7), (5.12), (5.13), together with equation (5.15)
for H(x). It indeed recovers precisely the scaling spectra obtained numerically in section 4
by progressively increasing Ũ , and illustrated in figure 4.

The limitations of the above LMA(RPA) reside in the δ-function form of χ+−(ω)—in
reality χ+−(ω)will have non-zero width, reflecting a finite lifetime for the spin-flip excitations.
To encompass this we proceed as in [5], retaining the functional form equation (5.4) for F(ω̃)
(which has finite width provided α �= 1), and employing a high-frequency cut-off ω̃c to render
F(ω̃) normalizable (equation (5.3b)). The width parameter α is then determined by requiring
that the leading low-frequency behaviour of the imaginary part of the T = 0 single self-
energy is recovered exactly. As explained in [5] this requires A = 1

2 [ωm/�0Z]2 (with Z

the T = 0 quasiparticle weight), which in turn determines α uniquely for a chosen cut-off
ω̃c. The latter is of course arbitrary but, as one expects, results are not sensitive to it [5]; in
practice, as in [5], we choose ω̃c = 10. From now on we refer to this simply as the LMA,
and recall in passing that [5] the (T = 0) HWHM Kondo scale ωK = 0.691ω′

m for both it
and the LMA(RPA).

The resultant LMA scaling spectra are shown in figure 5 for the same temperatures
considered in figure 4 for their LMA(RPA) counterparts, T/ωK = 0.1, 0.5, 1, 5 and 10.
The differences between the two are seen to be rather minor; in fact for T/ωK � 1 the
corresponding spectra are essentially coincident for all frequencies. Not unexpectedly, the
primary differences arise at low temperatures and frequencies, comparison of figures 4, 5
showing that for T/ωK < 1 the Kondo resonance diminishes less rapidly with increasing
temperature in the LMA(RPA).
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Figure 5. LMA scaling spectra obtained as explained in text: π�0D(ω; T ) versus ω/ωK for
T/ωK = 0.1 (solid curve), 0.5 (long dash), 1 (short dash), 5 (point–dash) and 10 (dotted).

To pursue this we focus on the thermal evolution of the spectrum at the Fermi level,
D(ω = 0; T ); which is related to the single self-energy by

π�0D(0; T ) = [1 + �−1
0 �I(0; T )]−1 (5.28a)

with

�I(0; T ) = �I
↑(0; T ) +

�−1
0 [�̃R

↑ (0; T )]2

1 + �−1
0 �I

↑(0; T ) (5.28b)

given in terms of the LMA self-energies (as follows generally from equation (2.13) using p–h
symmetry). The resultant (T /ωK)-dependence of π�0D(0; T ) is shown in figure 6, from
which the LMA and LMA(RPA) are indeed seen to be essentially coincident for T/ωK � 1,
while differing quite significantly at lower temperatures. For the LMA(RPA) it is readily shown
using the preceding results that the leading low-T dependence is �I(0; T ) ∼ O([T/ωK]4),
and hence π�0D(0; T ) ∼ 1 − O([T/ωK]4). For the LMA by contrast, the corresponding
T -dependence is of the correct form [2] �I(0; T ) ∼ O([T/ωK]2). The leading low-T̃
(=T/ωm) and low-ω̃ (=ω/ωm) dependence of the LMA �I(ω+; T ) can in fact be obtained
analytically using equations (5.7), (5.12), (5.13) with equation (5.4) for F(ω̃), together with
equation (2.13) relating �(ω+; T ) to the LMA �̃σ (ω

+; T ). The resultant �I(ω+; T ) is
thereby found to be

�−1
0 �I(ω+; T ) ∼ A

[
ω̃2 +

π2

3
T̃ 2

]
(5.29a)

= 1

2

[(
ω

�0Z

)2

+
π2

3

(
T

�0Z

)2]
(5.29b)

whereA = 1
2 [ωm/�0Z]2 is used, and henceπ�0D(0; T ) ∼ 1− π2

6 [T/�0Z]2. Equation (5.29)
differs from the known exact result [2,22] only in the coefficient of [T/�0Z]2, the exact value
for which is π2

2 .
Figure 6 also shows the explicit high-temperature asymptotic result for π�0D(0; T ),

equation (5.25), which is essentially perfect quantitatively for T/ωK � 10, and accurate to
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Figure 6. The Fermi level spectrum π�0D(ω = 0; T ) versus T/ωK for the LMA (solid curve)
and LMA(RPA) (dotted); the point–dash curve shows the high-temperature asymptotic behaviour
equation (5.25). NRG results [21] for the Kondo model are also shown (dashed curve).

within 10% down to T/ωK � 5. We believe in fact that the leading high-temperature form
from equation (5.25), π�0D(ω; T ) ∼ 3π2/[16 ln2(T /ωK)] is exact; for essentially the same
reasons that the present theory captures the exact high-temperature behaviour of the resistivity,
as discussed in the following section.

Finally, the LMA results for π�0D(0; T ) are also compared in figure 6 to recent NRG
calculations [21] performed directly on the Kondo model (with ρhost(0)J = 0.19); the NRG
results for D(0; T )/D(0; 0) are shown, and allow for the slight offset in the NRG �0D(0; 0)
below its exact value of 1/π . Agreement is qualitatively good although, as expected from
equation (5.29b) where the coefficient of the leading low-T term is 1

3 of its exact value, the
LMAπ�0D(0; T ) is higher than the NRG data at low temperatures; and this behaviour persists
over the temperature range for which NRG data have been published. No great leap of faith is
however required to anticipate that NRG results for higher temperatures are likely to concur
with the high-temperature behaviour of the present theory.

6. Resistivity

One reason why a knowledge of the single-particle spectrum D(ω; T ) is important, is that
transport properties may be obtained directly from it, as mentioned in section 2. We consider
here the resistivity ρ(T ) (equation (2.2)), focusing naturally on the Kondo scaling regime; and
for which the present theory is found to be asymptotically exact at high temperatures, while
also recovering the correct Fermi liquid form ρ(T )/ρ(0) ∼ 1 − β[T/ωK]2 as T → 0 [19],
and yielding rather good agreement with NRG calculations [16].

First, we consider briefly the approach to the Kondo scaling limit with increasing
interaction strength Ũ . The inset to figure 7 shows the resultant ρ(T )/ρ(0) versus T/ωK

obtained from the LMA(RPA), for three different Ũ : 4, 6 and 8. From this the rapid approach
to the limiting scaling form is self-evident. Deviations from scaling behaviour naturally set
in for non-universal temperatures T on the order of �0. This leads to the characteristic
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Figure 7. Resistivity ρ(T )/ρ(0) versus T/ωK for the Kondo scaling limit; LMA (solid curve),
LMA(RPA) (dashed). Inset: the approach to universal scaling with increasing Ũ , ρ(T )/ρ(0)
versus T/ωK for the LMA(RPA) with Ũ = 4 (dotted curve), 6 (dashed) and 8 (solid curve).

Ũ -dependent ‘upturn’ in ρ(T ) evident in figure 7 (inset); which with increasing Ũ moves
rapidly to exponentially large vales of T/ωK (ωK ∝ exp(−πU/8�0)), such that more and
more of the Kondo scaling form is recovered. The main part of figure 7 shows the (T /ωK)-
dependence of the resistivity in the Kondo limit, obtained using the analytical results of
section 5. Results for both the LMA(RPA) and LMA are shown and, as expected from the
corresponding discussion of spectral asymptotics (section 5.1), are coincident in practice for
T/ωK � 1.

We thus consider first the high-temperature behaviour of ρ(T ). This is controlled by
the high-temperature form of D(ω; T ), the leading asymptotic behaviour of which is given
explicitly by equation (5.26). Inserting the latter into equation (2.2) for ρ(T ), and transforming
the integration variable therein from ω to x = ω/T ≡ ω′/T ′, yields straightforwardly the
leading asymptotic behaviour for T/ωK 
 1,

ρ(T )

ρ(0)
∼ 3π2

16

1

ln2(T /ωK)
(6.1)

(where ωK ∝ ω′
m is used). This is indeed the exact high-temperature asymptote for

the S = 1
2 Kondo/s–d model, first obtained as the leading logarithmic sum of parquet

diagrams by Abrikosov [17]. Note also that this behaviour mirrors closely the leading high-
frequency asymptotics of the T = 0 single-particle spectrum, given from equation (5.23) by
π�0D(ω; 0) ∼ 3π2/[16 ln2(|ω|/ωK)].

Resummation of parquet diagrams for the Kondo/s–d model leads further to the well
known Hamann approximation for ρ(T ) [18],

ρ(T )

ρ(0)
� 1

2

{
1 − ln(T /TKH)

[ln2(T /TKH) + 3π2

4 ]
1
2

}
(6.2)

which correctly recovers equation (6.1) to leading order for T/ωK 
 1 (TKH ∝ ωK). A fit of
equation (6.2) to our results is shown in figure 8 (with TKH/ωK = 0.76). From this, as found
also in NRG calculations (see [16]; see also figure 9 below), it is seen that the Hamann result
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Figure 8. ρ(T )/ρ(0) versus T/ωK for the LMA (solid curve) compared to the Hamann
approximation equation (6.2) (dashed curve).

accounts well for ρ(T ) down to temperatures T/ωK ∼ 1; while the leading high-temperature
behaviour equation (6.1) is by contrast accurate only for T/ωK � 102. We note too the parallel
between the Hamann results for ρ(T ), and equation (5.23) for the high-frequency behaviour
of the single-particle spectrum for T = 0; where the latter in practice agrees well with NRG
results for D(ω; 0) down to ω/ωK ∼ 1 (see e.g. [15], figure 2 therein), even though its leading
high-frequency asymptote ∝1/ ln2(|ω|/ωK) is accurate only for ω/ωK � 102.

We turn now to the low-temperature asymptotics of ρ(T ), which as first shown by
Nozières [19] has the characteristic Fermi liquid form

ρ(T )

ρ(0)
∼ 1 − b

[
T

�0Z

]2

(6.3)

with the exact coefficient b = π2; and where �0Z (with Z the T = 0 quasiparticle weight)
is related to the conventional Kondo temperature TK, defined such that the static impurity
susceptibility χimp = (gµB)

2/4TK, by TK = π
4 �0Z. The T 2-expansion of ρ(T ) may be

extended to higher order via the methods of boundary conformal field theory [23], and in
principle by the more generally applicable renormalized perturbation theory [24, 25]. The
former has been carried out exactly up to (T /�0Z)

6 [23]; but this impressive feat barely
extends the applicability of the T 2-expansion beyond T/�0Z ∼ 10−1, up to which the Fermi
liquid result equation (6.3) is accurate in practice.

As shown in [16], the leading low-T behaviour of ρ(T ) for the AIM generally is related
to the low-(ω, T ) behaviour of the single-particle spectrum by

ρ(T )

ρ(0)
∼

{
1 +

(πT )2

6

(
∂2A(ω; 0)

∂ω2

)
ω=0

+
T 2

2

(
∂2A(0; T )

∂T 2

)
T=0

}
(6.4)

where A(ω; T ) = π�0D(ω; T ). In the Kondo limit the exact results are [2, 16] A(ω; 0) ∼
1− 3

2 [ω/�0Z]2 and A(0; T ) ∼ 1− π2

2 [T/�0Z]2; equation (6.3) thus follows. The leading low-
T behaviour of ρ(T ) from the present LMA can likewise be determined. It recovers the Fermi
liquid form equation (6.3), scaling in terms of T/�0Z, although the coefficient b is not exact.
For the LMA, A(ω; 0) to leading order (and hence the first non-trivial term in equation (6.4))



3624 D E Logan and N L Dickens

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T / T
K

0

0.2

0.4

0.6

0.8

1

ρ(
T

) 
/ ρ

(0
)

Figure 9. ρ(T )/ρ(0) versus T/TK (with TK defined such that χimp = (gµB)
2/4TK). LMA (solid

curve) and NRG results [16] for the AIM with Ũ = 4 (diamonds). The exact high-T asymptote
ρ(T )/ρ(0) ∼ 3π2/[16 ln2(T /TK)] [17] is also shown (dashed curve); as are results from a recent
low-T approximation [26] exploiting integrability (dotted curve), see the text for a discussion.

is exact, while A(0; T ) = [1 + �−1
0 �I(0; T )]−1 ∼ 1 − π2

6 [T/�0Z]2 (from equation (5.29b));
so the coefficient b = 2π2/3. And for the LMA(RPA), where A(ω; 0) ∼ 1 − [ω/�0Z]2 [5,6]
and A(0; T ) ∼ 1 − O([T/�0Z]4) (section 5.2), b = π2/3. The difference between the
LMA(RPA) and LMA at low temperatures is of course seen directly in figure 7.

In figure 9 the LMA ρ(T )/ρ(0) versus T/TK is compared directly to the NRG results of
Costi et al [16]. The latter were obtained for the AIM with Ũ = 4; and the final two/three
high-T NRG points shown correspond to T ∼ O(�0), thus exhibiting the characteristic non-
universal upturn from Kondo scaling behaviour mentioned above in relation to figure 7 (inset).
We regard the agreement with NRG as rather good, the more so given the relative simplicity of
the LMA and its ready extendibility to a much wider range of problems than the integrable AIM.
Figure 9 also shows results from a recent approach [26] that, while unable to access single-
particle dynamics, focuses directly on transport (strictly the linear differential conductance,
which is however known to differ negligibly from ρ(T ) [21]). This method exploits the
integrability of the AIM via an approximate treatment of the Bethe ansatz equations, and is
designed to capture the low-T behaviour. That is does so very well up to T/TK ∼ 1 is evident
from figure 9; although it does not appear to recover the high-temperature Abrikosov asymptote
equation (6.1) (referred to in [26] as the 1-loop RG result after its recent essential rediscovery
in [27] via an elegant RG approach). The latter (specifically 3π2/[16 ln2(T /TK)]) is also
shown in figure 9 and is recovered by the present work, in practice for T/TK � 102.

7. Conclusions

The subject of this paper has been single-particle dynamics of the AIM, pursued via the LMA
extended to finite temperature, and with a natural emphasis on the strongly correlated Kondo
scaling regime. The approach yields thereby a rich, and rather successful description of the
thermal destruction of the Kondo resonance and hence of transport properties such as the
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resistivity. This augurs well for the future, since the LMA is neither technically difficult nor
confined to the integrable, metallic AIM considered here; suggesting its practical viability as
a potentially powerful route to dynamics and transport properties of a wider range of quantum
impurity models, as well as e.g. the periodic Anderson and Hubbard [28] models within the
framework of dynamical mean-field theory. Problems of this ilk are currently under study, and
will be considered in subsequent publications.
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